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Abstract 

Extracorporeal membrane oxygenation (ECMO) can provide life-saving support for critically ill patients suffering 
severe respiratory and/or cardiac failure. However, thrombosis and bleeding remain common and complex problems 
to manage. Key causes of thrombosis in ECMO patients include blood contact to pro-thrombotic and non-physio-
logical surfaces, as well as high shearing forces in the pump and membrane oxygenator. On the other hand, adverse 
effects of anticoagulant, thrombocytopenia, platelet dysfunction, acquired von Willebrand syndrome, and hyperfi-
brinolysis are all established as causes of bleeding. Finding safe and effective anticoagulants that balance thrombosis 
and bleeding risk remains challenging. This review highlights commonly used anticoagulants in ECMO, including their 
mechanism of action, monitoring methods, strengths and limitations. It further elaborates on existing anticoagulant 
monitoring strategies, indicating their target range, benefits and drawbacks. Finally, it introduces several highly novel 
approaches to real-time anticoagulation monitoring methods including sound, optical, fluorescent, and electrical 
measurement as well as their working principles and future directions for research.

Keywords Anticoagulation, Extracorporeal Membrane Oxygenation, Monitoring Techniques, Thrombosis, Bleeding, 
Respiratory Failure, Heparin-Induced Thrombocytopenia (HIT)

Introduction
Extracorporeal membrane oxygenation (ECMO) is a 
treatment option for patients with advanced cardiores-
piratory failure and can be utilized in both children and 
adults [1]. ECMO is a life-saving heart–lung machine 
that delivers oxygen to patients with refractory severe 
respiratory or cardiac failure as they await a transplant 
or recover from a serious illness for a few days or weeks 
[2]. In an ECMO circuit, the deoxygenated blood drained 
from the venous circulation is pumped to the oxygenator 
via a pump to exchange carbon dioxide with oxygen. The 
blood is then returned to either the venous (VV-ECMO) 
or arterial (VA-ECMO) circulation [3]. The ECMO cir-
cuit components (Fig.  1) include a pump, membrane 
oxygenator, heat exchanger, venous cannula, arterial or 
venous infusion canula, tubing, and connectors [4].

The most frequent complications and one of the com-
mon causes of death for patients on ECMO are thrombus 
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formation and bleeding [5, 6]. The risk of bleeding is 
related to patient-specific and treatment-related factors 
associated with ECMO. According to Virchow’s triad, 
which explains the thrombosis etiologies as hyperco-
agulability, vessel wall injury, and blood flow stasis, the 
ECMO circuit contains non-biological surfaces, regions 
of very high shear stress and regions of prolonged blood 
residence time, all of which act to promote thrombus 
formation at a level requiring systemic anticoagulation, 
which in turn increases bleeding complications [7].

ECMO patients are frequently critically ill, increasing 
the risk of bleeding complications [8]. The bleeding rate 
during ECMO is 20.8–39.6% [6, 9] with the cannula site 
(13.2%), gastrointestinal tract (5.5%), lungs (6.1%), and 
central nervous system (3.9%) being the most prevalent 
sites [10]. ECMO patients are also at risk of thrombosis 
complications, including ischemic stroke, right ventricu-
lar thrombus [11], left ventricular thrombus [12], and pul-
monary embolism [13]. The rate of thrombosis formation 
in patients undergoing ECMO is 10–46.1% of patients 
depending on the circuit type and age of the patient in 
various centres [14]. Finding the balance between bleed-
ing and thrombosis necessitates continuous monitor-
ing of various parameters including coagulation factors, 

fibrinogen, and platelets. In this review, conventional and 
recently developed anticoagulants used in ECMO are 
presented, including their mechanism of action, moni-
toring methods, strengths and limitations. It expands on 
existing anticoagulant monitoring systems, indicating 
their target range, advantages, and disadvantages. It also 
introduces various unique real-time coagulation moni-
toring techniques, as well as their operating principles 
and future research prospects.

Anticoagulation during extracorporeal circulation
Firstly, anticoagulants utilized in ECMO are summarized, 
including their benefits and limitations to provide a com-
prehensive viewpoint for future research. In addition, 
this review takes a fresh view on anticoagulant monitor-
ing strategies by classifying them according to their pur-
pose (Fig. 2).

Anticoagulant agents
Anticoagulants commonly used for anticoagulation in 
ECMO patients include heparin, direct thrombin inhibi-
tors (DTIs) (bivalirudin, argatroban, lepirudin), fac-
tor Xa inhibitors (danaparoid and fondaparinux), direct 
oral anticoagulants (DOAC) (DTI (dabigatran), Xabans 

Fig. 1 Schematic of ECMO setup indicating the most likely clot formation sites
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(rivaroxaban, apixaban, darexaban, edoxaban, and 
betrixaban)), factor-XIIa inhibitors, nafamostat mesylate 
(NM), and warfarin so that heparin and DTIs are the 
most prevalent anticoagulants used in ECMO patients. 
Although heparin is the most commonly used in clini-
cal applications, heparin resistance is a major concern 
in ECMO. It is defined as a situation where the ability of 
heparin to inhibit thrombin (factor IIa) and fibrin forma-
tion is reduced such that the correlation between dose 
and response is lost and increasing the heparin dosage 
will not result in the desired anticoagulation effect [7, 15]. 
Moreover, its usage is associated with the rare but life 
threatening immune-mediated disorder Heparin-induced 
thrombocytopenia (HIT), specified by thrombocytopenia 
and a paradoxical prothrombotic state in heparin treat-
ment [16]. Alternative anticoagulants, on the other hand, 
offer excellent potential for usage in HIT patients, but 
present some other challenges. The working mechanism, 
advantages, disadvantages, and other aspects of differ-
ent anticoagulants used during ECMO support including 
heparin and its alternatives are provided in Table 1.

Heparin
UFH is the most frequently used anticoagulant in 
patients undergoing ECMO due to its advantages 
including its low cost, titratability, and easy reversibility 
by protamine. Heparin inhibits thrombin by binding to 
antithrombin (AT). AT has low anticoagulation activity 
but when conjugated with heparin, its anticoagulation 
activity increases 1000–2000-fold [17]. Heparin resist-
ance is the main concern in ECMO, which is defined as 
a situation where the heparin ability to inhibit throm-
bin and fibrin formation is reduced so that heparin dos-
age response is not correlated with the injected amount 
of heparin and increasing the heparin dosage will not 
result in the desired anticoagulation effect [7]. More 
heparin injections are required under these conditions 
to achieve desired activated clotting time (ACT) values, 
which may result in bleeding. The situation is signifi-
cantly worse in newborns as their AT level is lower than 
that of adults [18].

Heparin use is associated with immune-mediated side 
effects known HIT and specified by thrombocytopenia 

Fig. 2 Various anticoagulants used in ECMO devices and their monitoring methods (AT: Antithrombin; DTI: Direct Thrombin Inhibitor; DOAC: Direct 
Oral Anticoagulant; NM: Nafamostat mesylate; FBC: Full Blood Count; aPTT: Partial Thromboplastin Time; PT/INR: Prothrombin time/international 
normalized ratio; ECT: Ecarin Clotting Time; POC: Point-of-Care; ACT: Activated Clotting Time; ROTEM: Rotational Thromboelastometry; TEG: 
Thromboelastography)
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and a paradoxical prothrombotic state in heparin treat-
ment. While it has been reported that HIT is a rare phe-
nomenon in neonates [19, 20], it occurs in 0.8–7% of the 
adult ECMO patients [21, 22]. It has been demonstrated 
that 30–60% of HIT patients experience thrombotic 
complications [23, 24]. Therefore, in order to address the 
aforementioned issues, it is necessary to provide alterna-
tive anticoagulants to heparin, such as bivalirudin [20].

Bivalirudin
DTIs, unlike UFH, do not rely on AT to act as an anti-
coagulant, but instead they directly inhibit both free 
circulating and fibrin-bound thrombin. Bivalirudin is 
a reversible thrombin-binding synthetic bivalent ana-
logue of hirudin with excellent pharmacological profiles 
[25]. Since bivalirudin can inhibit plasma thrombin, clot-
bound thrombin, and collagen-induced platelet activa-
tion without forming a complex with the cofactor AT III, 
it has a much higher bioavailability than heparin [26, 27]. 
It has a short half-life of approximately 25 min in patients 
with normal renal function, making it suitable for rapid 
titration [28, 29]. It is mostly metabolized by the liver 
through proteolytic cleavage, but it also partially cleared 
by the kidney (20%), so the dose should be adjusted 
during renal dysfunction as it prolongs its half-life [30, 
31]. Bivalirudin has been used to prevent clotting dur-
ing ECMO in both HIT patients and non-HIT patients 
[32–34]. It is administered intravenously in doses rang-
ing from 0.025 to 0.48 mg/kg/hour, with an action time 
of 2–4  min [35]. Bivalirudin efficacy has been shown 
to correlate well with both ACT and aPTT results [36, 
37]. The researchers also compared the bivalirudin and 
UHF aPTT results and discovered that using bivalirudin 
yields more stable aPTT results [34, 38]. There is no uni-
fied approach for bivalirudin infusion, so it can be used 
with or without an initial bolus of bivalirudin with ini-
tial loading ranging from 0.04 to 2.5 mg/kg followed by 
continuous infusion [34, 39]. In particular, Koster et  al. 
used bivalirudin for HIT patients with a bolus of 0.5 mg/
kg followed by a continuous infusion of 0.5  mg/kg/h to 
maintain an ACT of 200–220  s [33]. In another study, 
Jyoti et  al.  [39], were able to achieve a target ACT of 
200–220 s with an injection rate of 0.1–0.2 mg/kg/h and 
no bolus dosage of bivalirudin. The dose of bivalirudin is 
maintained at 0.03–0.2 mg/kg/h to maintain therapeutic 
targets, with [19, 32, 33] or without [34] an additional 
initial amount of 0.5  mg/kg. In a meta-analysis, it has 
been reported that in-hospital mortality, major bleeding 
events and pump-related thrombosis were less frequent 
in DTI compared to heparin [40].

There are some considerations before bivalirudin usage 
in ECMO. First, it affects the renal clearance process in 
patients with impaired renal function, resulting in drug 

accumulation. Therefore, lower dosage of bivalirudin is 
required for patients with renal dysfunction [41]. More-
over, since bivalirudin is rapidly metabolized where the 
blood is in stasis, it is not a viable option in venoarte-
rial ECMO [42]. Another limitation of the bivalirudin 
is that there is no antidote in case of overdose or bleed-
ing, which makes bleeding management challenging. 
Bivalirudin resistance may exist in the absence of a clear 
etiology [43]. APTT, ECT, and plasma-diluted thrombin 
time tests are typically used for monitoring anticoagulant 
effect of bivalirudin [44, 45].

Argatroban
Argatroban is a synthetic direct thrombin inhibitor with 
a half-life of 39–51  min [46] and is not recommended 
for patients with severe hepatic dysfunction since it is 
metabolized in the liver, therefore, renal failure is not a 
concern. One of the primary issues in ECLS that limits 
DTIs adoption is a lack of pharmacologic antidote. How-
ever, due to their short half-lives, if bleeding occurs, the 
injection of DTIs can be stopped or reduced to stop the 
bleeding. Argatroban has been utilised as an alterna-
tive to UHF in cases of suspected HIT in adults, pedi-
atrics, and neonates on ECMO. Its maintenance dose is 
0.1–0.65 µg/kg/min [47, 48], and centres use a 100–200 
µg/kg initial bolus dose [35].

Fondaparinux
Fondaparinux is a factor Xa inhibitor that has been indi-
cated to be effective as an anticoagulant agent in severe 
acute HIT [49]. Parlar et al. [50] used fondaparinux daily 
subcutaneous injections (2.5 mg per day) in ECMO loop 
for a patient with HIT and found no adverse effects. 
Compared with DTIs which require the aPTT or the 
ECT monitoring methods, anti-FXa assays are more reli-
able for fondaparinux monitoring since anti-FXa assays 
do not rely on patient factors. To delineate, the aPTT and 
the ECT are influenced by the prothrombin level of the 
HIT patients which is often low and results in falsely long 
aPTT and, consequently, in inappropriate dose of the 
anticoagulant [51].

Nafamostat mesylate
Nafamostat mesylate is a synthetic serine‐protease inhib-
itor that inhibits many procoagulant factors, includ-
ing thrombin, plasmin, trypsin, kallikrein, factors XIIa 
and Xa [52]. In the literature, there are conflicting find-
ings for the use of NM in ECMO. Lim et al. [53] investi-
gated thromboembolic or bleeding complications during 
ECMO using heparin and NM. According to their find-
ings, bleeding complications were more common in 
patients receiving NM, while thromboembolic problems 
were comparable in both cases. Other studies, on the 
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other hand, claim that it is an appropriate alternative 
to heparin that reduces the risk of bleeding in ECMO 
patients [54, 55]. Like other anticoagulants, there is no 
unified approach for the dosage rate but typically it falls 
into the range of 0.26–0.93 mg/kg/hr [54–56].

Warfarin
Warfarin is an oral anticoagulant that inhibits the utilisa-
tion of vitamin K (factors II, VII, IX, and X). The main 
advantage of this method is its ease of administration and 
reversibility [57]. When patients have been adequately 
anticoagulated with DTIs and require long-term antico-
agulation after the acute period of HIT, they are typically 
switched to vitamin K antagonists (VKA) such as warfa-
rin and phenprocoumon [58]. Warfarin dosage should be 
determined based on the patient’s response to the drug, 
and it can be monitored using international normalised 
ratio (INR) analysis to keep its results in therapeutic 
range [2, 3, 59]. Lee et al. describe the successful use of 
ECMO as a bridge-to-recovery therapy in a patient suf-
fering from fatal warfarin-exacerbated DAH [60].

Anticoagulation monitoring methods
Given the importance of anticoagulant monitoring and 
dose adjustment, it is vital to determine the appropri-
ate approach for each anticoagulant and its dosage. Par-
tial thromboplastin time (aPTT), anti-factor Xa assay, 
D-dimer, PT/INR, Full blood counts (FBC), Fibrinogen, 
ECT, activated clotting time (ACT), and viscoelastic 
tests (ROTEM/TEG) are discussed in this section. Also, 
recently developed novel real-time monitoring meth-
ods including sound, optical, fluorescent, and electrical 
measurements methods are presented. Table  2 summa-
rises the sample type, purpose, target range, advantages, 
and disadvantages of different techniques.

Activated partial thromboplastin time
APTT is an anticoagulant monitoring technique that is 
most commonly used to assess the effect of heparin and 
bivalirudin [76]. It is defined as the time required for cal-
cium-free plasma to generate clots after being exposed 
to fibrin-activating reagents and calcium. Clot forma-
tion can be detected using a variety of analytical meth-
ods, including optical, mechanical, and electrochemical 
techniques [77]. This method involves combining citrated 
plasma, a phospholipid, calcium, and a contact pathway 
activator (silica, celite, kaolin, ellagic acid, polyphenolic 
acid) to trigger clot formation [78]. The normal range is 
defined in most laboratories as 25–90 s (an aPTT level of 
1.5–2.5 times baseline is recommended for anticoagula-
tion monitoring) but it varies from clinic to clinic and is 
determined by the instrument and reagents used and it 
is critical not to extrapolate data from one ECMO centre 

to another without knowing the method and assay used 
[79, 80]. Bates et al. investigated the relationship between 
aPTT and anti-factor Xa assay heparin level using four 
different automated coagulometers and six commercial 
aPTT reagents. Their findings revealed that, while there 
is a good correlation (r = 0.64 to 0.95) between aPTT 
anti-factor Xa assay results, the aPTT values at 0.3  IU/
mL plasma heparin concentration determined by anti-
factor Xa assay will range from 48 to 108 s, depending on 
the instrument and reagent utilised [81].

Another concern with this method is that it can be 
influenced by parameters, including drugs, hemato-
crit, acute phase reactants, abnormalities in coagulation 
factors, high C-reactive protein, hyperbilirubinemia, 
hyperlipidemia and lupus anticoagulant [82] so that defi-
ciencies in common pathway factors I, II, V, and X, as 
well as contact pathway components such as high-molec-
ular-weight kininogen, prekallikrein, and factors VIII, IX, 
XI, and XII, and lupus anticoagulants can prolong the 
aPTT results [78].

Anti-factor Xa assay
Anti-factor Xa is a functional chromogenic assay for 
coagulation monitoring and evaluating the effective anti-
coagulant concentration. The anti-Xa assay is specific 
to heparinoid’s action and is unaffected by deficits in 
other coagulation factors and can be used with or with-
out exogenous AT. In the former method, the sample is 
treated with sufficient AT, so that the rate-limiting rea-
gent, which is heparin, can inhibit Xa and produce a pre-
cise measurement of heparin in the patient sample. In 
this method, a specific amount of coagulation factor Xa 
conjugated with chromophore and AT is added to patient 
plasma containing heparin [83]. Following that, as a 
result of the chromogenic reaction, AT and heparin form 
an inhibitory complex that inactivates factor Xa. The acti-
vated factor X is then introduced to the sample, which 
cleaves the chromophore compound, and the amount of 
released chromophore is measured using spectroscopy. 
As the amount of remaining factor Xa in the sample is 
inversely proportional to the original amount of hepa-
rin, the colour change will be greater as less heparin/AT 
complex interacts with factor Xa, indicating a lower drug 
level. The relationship between AT and heparin is critical 
because, even with a high level of heparin, a deficiency 
in AT causes more unbound factor Xa, implying lower 
heparin levels. On the other hand, kits without AT do not 
add extra AT and give a more precise measurement of in-
vivo anticoagulation because the patient’s AT and hepa-
rin levels are both rate-limiting reagents. However, this 
approach has the problem of being unable to differentiate 
between AT deficiency and inadequate heparin [84, 85].
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The widely accepted target range for anti-factor Xa lev-
els during ECMO is 0.3–0.7  IU/mL [86, 87]. Unlike the 
ACT and aPTT methods, this method is unaffected by 
coagulopathy, thrombocytopenia, or dilution and best 
represents the overall heparin anticoagulation level. 
However, some parameters which can occur in patients 
on ECMO, such as hyperbilirubinemia, haemolysis, 
lipaemia, hyperlipidemia, and plasma-free haemoglobin 
affect anti-Xa assay results [88, 89]. Anti-Xa activity was 
observed to be significantly lower in ECMO samples with 
plasma free haemoglobin levels of 50  mg/dL or above 
when compared to normal samples: 0.33 (0.25–0.42) ver-
sus 0.4 (0.31–0.48) IU/mL [86, 87, 90]. It was stated that 
anti-Xa assay correlates better with heparin concentra-
tion than ACT and aPTT [91–93]. Nankervis et al. stud-
ied 12 neonates on ECMO to determine the appropriate 
heparin dosage based on ACT and anti-Xa results. Their 
findings show a strong correlation between anti-Xa test 
and heparin dosage (r = 0.75; p < 0.0001), however ACT 
results do not correlate with either anti-Xa or heparin 
dosage [94]. Also, in a cohort study, Bembea et  al. [95] 
discovered a moderate correlation between anti-factor 
Xa results and heparin injection dosage (r = 0.33) in 34 
extracorporeal life support (ECLS) pediatric patients, 
but a poor correlation with ACT (r = 0.02) and aPTT 
(r = 0.17) for all patients. It is worth noting that patients 
on ECMO who are being monitored by anti-Xa levels 
compared to ACT have fewer blood draws for monitor-
ing, a longer duration between circuit changes, and lower 
transfusions and dosages of activated factor VII [93, 96].

While anti-factor Xa assay can measure the hepa-
rin effect, it cannot reflect other coagulation param-
eters or the patient’s overall hemostatic condition [97]. 
In fact, the anti-Xa method only measures inhibition, 
not the amount of fibrin and thrombin produced in 
the patient’s body. Moreover, compared with ACT and 
aPTT, anti-factor Xa assay more expensive and not eas-
ily accessible in all laboratories and hospitals and its 
results are affected by hypertriglyceridemia (triglycer-
ide level > 360 mg/dL) and hyperbilirubinemia (bilirubin 
level > 6.6 mg/dL) [98].

Activated clotting time
ACT is the widely used and well-established point-of-
care (POC) method for anticoagulation monitoring. In 
this method, whole blood is transferred to a tube coated 
with various activators, such as glass, celite or kaoline, 
ellagic acid, diatomaceous earth, silica, calcium, and 
phospholipids, to stimulate the contact activation path-
way and the coagulation response (fibrin clot forma-
tion) is measured over time in seconds. The mobility 
of a magnet during clot formation, or the variations in 
the velocity of blood movement as it begins to clot, is 

measured and recorded over time. When compared to 
laboratory-based methods, the advantage of ACT is that 
it can be conducted as a whole-blood test on a bedside 
machine, requires a little sample volume, is low-cost, 
and can be done by unacquainted individuals [99]. The 
amount of sample required for testing varies between 
10 µL and 2 mL depending on the ACT machine. How-
ever, several factors including hemodilution, platelet 
dysfunction, hypothermia, anemia, hypofibrinogene-
mia, thrombocytopenia, platelet inhibitors (e.g., GP IIb/
IIIa), and coagulation factor deficiencies can affect ACT 
results [100, 101].

There are currently no standardized target range for 
ACT, however the range of 140–240 s are commonly used 
in clinical practice [7, 102]. The aPTT approach works 
well for Unfractionated heparin (UFH) values between 
0.1 and 1 U/mL, but the ACT method works better for 
UFH concentrations between 1 and 5 U/mL. Therefore, 
based on the heparin level used in ECMO, ACT shows a 
poor correlation with heparin concentration, while aPTT 
yields acceptable results in neonates and adults [103–
105]. Several studies have been conducted to investigate 
the relationship between ACT, aPTT, and anti-Xa activity 
[106, 107]. Khaja et al. discovered that in neonates, aPTT 
has a stronger correlation with anti-XA than ACT [105]. 
Although ACT is a good indicator for high heparin con-
centrations in cardiopulmonary bypass (CPB), low-range 
ACT (ACT-LR) was proposed for use in the lower hepa-
rin dosage range (150–200  IU/kg) used in ECMO [61, 
105]. It is worth noting that most hospitals use ACT or 
ACT-LR methods for routine coagulation monitoring in 
ECMO.

D-dimer
The D-dimer protein is the cleaved product of the 
fibrinolysis process. Therefore, the presence of D-dimers 
in the blood signals clot lysis. D-dimer levels are higher 
in patients with disseminated intravascular coagula-
tion (DIC) caused by sepsis, deep vein thrombosis 
(DVT), pulmonary embolism, or other thrombotic dis-
orders. The D-dimer level, which describes the cross-
linked fibrin degradation products generated by reactive 
fibrinolysis, has also been shown to be a marker for 
determining oxygenator functionality and tracking oxy-
genator malfunction [108]. In a retrospective study it 
was found that D-dimer level increased significantly 
within 3  days before exchange from 15 [9–20] to 30 
[21–35] mg/dL (P = 0.002) and declined significantly 
within 1  day thereafter to 13 [7–17] mg/dL (P = 0.003) 
[109]. Although the oxygen transferred rate is commonly 
used to calculate the exchange time for the oxygenator, 
the D-dimer level, and particularly a steadily increasing 
level in the absence of an alternative explanation, is an 
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alternative method for calculating the appropriate time 
for membrane exchange.

Prothrombin time and international normalized ratio
Prothrombin time (PT) is one of the main clinical coag-
ulation monitoring methods. Prothrombin is a protein 
made by the liver that aids in blood clotting formation. 
This method involves adding thromboplastin (a mixture 
of tissue factor, calcium, and phospholipid) to patient 
plasma and measuring the time it takes for the plasma to 
clot [110]. The PT results are sensitive to thromboplastin 
components so using different thromboplastin reagents 
results in different Prothrombin times, even with the 
same plasma sample. Therefore, to have consistent and 
unified results, the World Health Organization (WHO) 
proposed the international normalized ratio (INR), which 
has since become the standard method for PT reporting 
[111]. In this way, INR represents the ratio of PT divided 
by a control PT value determined by using a WHO-
developed international reference thromboplastin rea-
gent. The target INR for a heparin-treated patient should 
be less than 1.5. Researchers also discovered that the PT/
INR value for other anticoagulants including VKA (e.g., 
warfarin), DTIs, or the oral Factor Xa inhibitors, is in 
the range of 2–3 or higher [112]. DTIs interfere with the 
prothrombin time and deficits in common factors I, II, V, 
and X can prolong PT results [113]. INR was developed 
to account for discrepancies in laboratory PT reagents 
and to standardise vitamin K antagonists (VKA), such as 
warfarin therapy monitoring [78].

Ecarin clotting time
Ecarin is a metalloprotease isolated from the venom of a 
saw-scaled viper echis carinatus and a specific activator 
of prothrombin that can be used to measure the activity 
of DTIs, such as argatroban and dabigatran [114, 115]. 
In this method, clotting time is measured after the addi-
tion of ecarin solution to diluted plasma. The conversion 
of fibrinogen to fibrin is used to measure the proteolytic 
activity of non-inhibited meizothrombin. ECT was suc-
cessfully implemented by Teruya et  al. for bivalirudin 
concentration monitoring in ECMO [62]. Although this 
method is not widely used in ECMO, it has been dem-
onstrated that ECT results have a strong correlation with 
bivalirudin concentration [37]. Furthermore, Alouidor 
et  al. recently proposed a point-of-care ECT analysis 
device with a good correlation with bivalirudin and dabi-
gatran concentrations that only requires 5 µL of whole 
blood [116]. Finally, it seems that more research into this 
approach in ECMO settings with various anticoagulants 
is required.

Viscoelastic tests
Thromboelastography (TEG) and rotational throm-
boelastometry (ROTEM) are point-of-care viscoelastic 
tests used in ECMO patients to monitor coagulation in 
the presence of a various stimulating agents [117–119]. 
Unlike other methods, such as ACT, aPTT, and PT/
INR, which only show the endpoint (whether or not a 
thrombus has formed), this assay can reveal informa-
tion about different aspects of the coagulation cascade, 
the clot formation dynamics, clot strength and clot lysis, 
and fibrinolysis [120–122]. The dynamic changes in the 
viscoelasticity of whole blood during clotting under 
low shear stress are recorded. A torsion wire or pin is 
used to measure the strength of the formed clot. The 
wire in TEG is stationary and the cup oscillates while 
in ROTEM, the cup is stationary while the pin oscillates 
[123]. The oscillations are hampered as the clot forms, 
and both the TEG and ROTEM devices detect and con-
vert changes in oscillations into the numerous measure-
ments evaluated. In this method, a pair of samples with 
and without heparinase addition are tested to investigate 
hemostasis in the presence of UFH [124]. The effective-
ness of UFH is then determined by comparing the clot-
ting time in both samples, which is a good indicator in 
cases where heparin resistance is a concern. The analysis 
duration for different parameters varies, so coagulation 
factors can be assessed in 5 min, and fibrinolysis analysis 
takes 60–90  min. While viscoelastic tests provide use-
ful information about the coagulation system, it does 
not provide data on the level of von Willebrand factor 
(VWF), which is a good indicator of potential bleeding 
or hemostasis condition [125]. Although the use of vis-
coelastic tests in ECMO patients has increased in recent 
years, it is still not widely available in most centres [126] 
which can be due to a lack of generalised therapeutic 
ranges in the neonatal population [17].

Novel real-time anticoagulation monitoring methods
This section presents recently developed novel real-time 
monitoring methods such as sound, optical, fluorescent, 
and electrical measurements. Furthermore, a brief expla-
nation of each approach and its application in ECMO cir-
cuits is provided.

Sound monitoring method
Due to the high shear rates in the ECMO pump, it is one 
of the suspect points for clot formation. Measuring the 
sound generated by the pump is a promising method 
for detecting clot formation in the pump and prevent-
ing potential patient and pump damage. Fuchs et  al. 
[127] discovered a link between sound signals and clots 
in the pump’s inlet and outlet while using ECMO. The 
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frequency spectrum changes while blood clots move 
through the pump at different pump speeds, which is 
a reliable indicator of clot formation inside the pump 
(Fig. 3). It has been illustrated that the acoustic analysis 
method is a low-cost, simple, and easy-to-access method 
that can provide reliable results and detect thrombosis 
formation in the pump in the early stages of thrombosis 
formation. Although this is a non-invasive technology, 
it can only be used to monitor thrombosis in the pump 
because the analysis is based on the sound made by the 
pump [128].

Optical method
Optical methods are non-invasive and real-time throm-
bus monitoring techniques that detect the light intensity 

scattered by blood at different wavelengths [129]. Fuji-
wara et  al. [130] utilized a hyperspectral imaging (HSI) 
technique to visualize thrombosis formation within a 
levitated centrifugal pump, which is commonly used 
in ECMO devices (Fig.  4). Two groups of pigs were 
employed in this study undergoing ECMO and LVAD. 
The purpose of this study was to detect thrombosis 
inside the centrifugal ECMO pump and the source of the 
thrombosis. In this way, multiple real-time images of the 
inside of the pump were acquired with the HS camera 
over the wavelength range of 608–752 nm. Within 24 h 
of blood circulation, thrombosis was discovered, arising 
from both the inside and outside of the pump. Throm-
bosis generated outside the pump was identified to form 
around the inlet cannula and junction between the pump 

Fig. 3 Acoustic spectrum of an infant patient in ECMO, the upper-left and lower-left spectra exhibit the inlet and outlet of a pump associated with 
an infant patient, respectively, while the upper-right and lower-right spectra depict the inflow and outflow spectrum, respectively, after 5 days for 
the same patient. Reused with permission from Ref. [127]
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inlet and tubing. It is worth noting that optical methods 
have some limitations. First, the installation and adjust-
ment of the distance for hyperspectral camera focusing 
should be considered. Furthermore, due to the limita-
tions on bending radius, optical fibres are fragile.

In another study, Morita et  al. [129] used a micro-
optical monitoring method with an extracorporeal cir-
cuit to detect thrombus in fresh porcine blood. Their 
setup composed of two micro-optical thrombus sen-
sors which detect scattered light at two wavelengths, 
660 and 855  nm. One optical sensor was placed on the 
rotary pump (to monitor clotting) and the other on the 
flow channel (less suspicious thrombus formation point, 
as reference point). In this vein, each LED emits 660 
and 855 nm light into the blood flow, which is absorbed 
or scattered by blood components (most notably red 
blood cells (RBCs)) and then detected by a photodiode. 
To monitor thrombus formation in the pump, the ratio 
of light intensity at each wavelength for both sensors was 
eventually measured. They also depicted that the pro-
posed micro-optical sensor has no installation limitations 
and allows researchers to install additional micro-sensors 
at various points where thrombus formation is suspected.

Fluorescence method
Fluorescence microscopy is another monitoring method 
for thrombin formation, which measures the onset of 
thrombus formation, which produces fibrin in the blood. 
By fluorescently labelling fibrinogen, it is possible to eval-
uate the microscopic clot formation process [131]. There-
fore, the clotting time can be calculated by measuring the 
variation and distribution of fluorescent intensity over 
time and, consequently, the influence of heparin con-
centration on blood clotting time. Considering that high 
shear rate regions are more suspect for clot formation, 

Sun et  al. [132] utilized a whole blood flow cytometry 
assay to measure platelet activation in a fresh human 
blood sample in the centrifugal pump and oxygenator in 
the ECMO circuit. It was found that platelet activation 
and adhesion on fibrinogen increases after 4 h of running 
ECMO which can result in thrombosis formation. On the 
other hand, GPIbα and GPVI platelet receptors popula-
tion decreases over time weakening platelet adhesion to 
collagen and VWF, resulting in bleeding complications 
(Fig. 5).

Electrical measurement
Electrical impedance measurements can be used to 
monitor blood coagulation in ECMO systems. Based 
on single or multiple-frequency electrical impedance 
measurements, it has been demonstrated that there is a 
relationship between thrombus formation and electrical 
resistivity/permittivity [133]. Red blood cells (RBCs) have 
phospholipid on their surfaces, they can activate fac-
tor IX causing coagulation. Therefore, it can be deduced 
that RBC aggregability is related to thrombus formation. 
Using multiple-frequency electrical impedance spectros-
copy, Li et al. [134] investigated RBC aggregability in an 
extracorporeal circulation system with pulsatile flow. 
Their results revealed that in coagulating blood, RBCs 
aggregability decreases, indicating thrombus formation. 
ACT and fibrinogen were examined to assess the rela-
tionship between aggregability and blood coagulation, 
and their results show a decrease in their level over time, 
similar to RBC aggregability (Fig. 6). It is also worth not-
ing that electrical impedance measurement can be read-
ily applied to low-cost, compact, and simple POC blood 
coagulation testing devices. However, the limitation of 
this method is that it is invasive because the electrodes 
must come into contact with the blood.

Fig. 4 a Illumination of the bottom surface of the pump by using stroboscope; Using the stroboscope method, it is feasible to view high-speed 
rotation of the impeller c which is not achievable without the use of the stroboscope method b Reused with permission from Ref. [130]
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Future perspectives
It is essential to find appropriate anticoagulants and 
related monitoring methods to balance between 
thrombosis and bleeding with ECMO. Factor XII 
inhibitors are promising anticoagulant agents which 
are currently under investigation in in-vivo ECMO 
models. It has been demonstrated that coating the 
surface with FXIIa‐directed corn trypsin inhibitor 
prevents blood clotting when catheters are inserted 

into rabbit jugular veins [135]. Also, it has been illus-
trated that knocking out FXII enhances the time 
to catheter occlusion. Recently, researchers found 
that human antibody 3F7 binds to FXIIa, prevent-
ing blood clotting within the ECMO circuit [136]. 
Antibodies have an advantage over other anticoagu-
lants in that they do not increase the risk of bleed-
ing. Although it has only been tested in animal 
ECMO circuits, FXII-directed therapy appears to be 

Fig. 5 Fluorescent images of adherent platelets on VWF, collagen, and fibrinogen of the blood samples at baseline and three hours after circulation 
in the two circuits. Modified and reused with permission from Ref. [132]

Fig. 6 Experimental results illustration: a Porcine blood with coagulation, b Porcine blood without coagulation. Reused with permission from Ref. 
[134]
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a promising method for clot prevention on ECMO 
support [137].

It has recently been demonstrated in a variety of clini-
cal settings that using low-dose anticoagulation is an 
effective strategy to decrease bleeding complications 
and enhance survival rate while patients are receiving 
ECMO, as opposed to when a standard dosage is used 
[138, 139]. Although thrombosis is still a concern, recent 
studies suggest that there is no difference in thrombosis 
complications and hospital mortality between low-dose 
and therapeutic anticoagulant dosage [140]. While sev-
eral studies have now demonstrated the benefits of using 
low-dose anticoagulation in adults to reduce bleeding 
while still preventing major thrombosis, there is still a 
lack of research on the efficacy and safety of using low-
dose anticoagulation in pediatric patients undergoing 
ECMO. As a result, extensive clinical research and trials 
are required to determine the optimal low anticoagulant 
dosage in both adults and pediatric patients.

In another approach, shear-sensitive drug delivery sys-
tems may protect the ECMO circuit from coagulation and 
thrombosis formation by modifying commonly used gen-
eralized drug delivery which results in bleeding complica-
tions. Localized drug delivery method is a novel approach 
which relies on material deformation or disaggregation 
to elicit drug release [141]. Nanoparticles can be used for 
nanotherapeutic targeting drug delivery systems that, like 
platelets, can activate (rupture) under high shear stress 
and release the drug at the site of action to prevent blood 
clotting [142]. This characteristic enables the develop-
ment of shear-sensitive nanoparticles capable of releas-
ing antithrombosis drugs only at high shear stress points, 
such as the cannulas, pump and oxygenator while remain-
ing intact at lower shear rates. This is beneficial because it 
not only reduces the amount of anticoagulant used but also 
aids in localized drug delivery, which only releases the drug 
where it is required, potentially resulting in less bleeding.

Recently, an anticoagulant-free method based on sur-
face modification of the ECMO circuit was developed to 
decrease bleeding and thrombosis complications [143]. 
This method is based on the application of appropriate 
surface coating techniques to make the surface of the 
tubing, membrane oxygenator, and pump biocompat-
ible and avoid thrombosis formation. Several innovative 
approaches, such as polymer coating, nitric oxide (NO) 
coating, and tethered liquid perfluorocarbon coating, are 
presented that can improve ECMO hemocompatibility. 
When considering surface coating technologies, it is also 
crucial to consider gas exchange rate, pressure drop, and 
shear stress inside the membrane oxygenator. These fea-
tures must be incorporated to increase the stability and 
durability of the materials suitable for biocompatible sur-
face coatings.

Various real-time analysis methods for thrombosis 
monitoring are presented in this review. Although these 
techniques do not often show the coagulation status 
quantitatively, there are low-cost, compact, and user-
friendly POC equipment available that can be used at 
the patient’s bedside. POC diagnostics are promising 
techniques for evaluating anticoagulation impact when 
compared to conventional standard laboratory-based 
assays [144]. Laboratory-based testing is time-consum-
ing, costly, and user-dependent. POC devices have sev-
eral advantages, including reliability, quick response, and 
reduced sample consumption [145]. Some conventional 
coagulation monitoring methods, such as d-dimer, aPTT, 
PT/INR, and ECT, have recently been developed as POC 
devices [146]. Although the benefits of POC devices are 
well established, and various POC devices have been 
introduced, there is always a need to study novel devices 
to improve the accuracy and reliability of the results. 
Microfluidic devices, in particular, can be exploited for 
anticoagulation monitoring due to benefits such as low 
cost, simple operation, quick analysis, and reduced sam-
ple consumption. Furthermore, because microfluidic 
systems are high throughput, several samples can be 
analysed simultaneously with a small amount of sample 
in a single integrated platform [147]. Although micro-
fluidic platforms have been developed and are currently 
being used in research laboratories, they are rarely mar-
keted. Commercialisation of low-cost and high-through-
put microfluidic devices for monitoring the coagulation 
pathway would provide unique advantages in the clinical 
management of patients receiving ECMO.

Conclusion
Although heparin is still the gold standard anticoagu-
lation agent utilized in ECMO, heparin resistance and 
HIT are major clinical limitations. Next-generation 
anticoagulants also have their own shortcomings, 
which may include: short half-life, lack of antidots and 
restrictive monitoring methods that hamper broad 
clinical implementation. Several anticoagulant moni-
toring methods have been developed to track the 
patient’s coagulation condition and adjust the antico-
agulant dosage; some monitoring methods correlate 
better with specific anticoagulant agents than others. 
To establish an optimal balance of anticoagulation and 
bleeding requires a variety of approaches, rather than a 
single monitoring method, to monitor anticoagulation 
impact. Existing research efforts should be directed 
towards the development of novel anticoagulants, sur-
face engineering to modify non-biocompatible surfaces, 
targeted drug delivery systems, and the development of 
real-time and POC monitoring methods that will result 
in fewer thrombosis and bleeding complications.
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